Menu
Model Zoo

DX Model Zoo

Image Classification

NameDatasetInput ResolutionOperationsParametersLicenseMetricRaw AccuracyNPU AccuracyFPSFPS/WattSourceCompiledonnxjson
AlexNet-1
ImageNet
224x224x3
0.72
61.1
BSD 3-Clause
Top1
56.54
56.44
663
1,218.68
DenseNet121-1
ImageNet
224x224x3
3.19
8.04
BSD 3-Clause
Top1
74.43
73.29
33
0.38
DenseNet161-1
ImageNet
224x224x3
8.43
28.86
MIT
Top1
77.11
76.89
14
0.38
EfficientNetB2-1
ImageNet
288x288x3
1.6
9.08
BSD 3-Clause
Top1
80.61
79.06
757
740.28
EfficientNetV2S-1
ImageNet
384X384x3
9.47
21.38
BSD 3-Clause
Top1
84.24
0.29
624
270.94
HarDNet39DS-1
ImageNet
224x224x3
4.26
17.56
MIT License
Top1
72.08
71.62
1,838
2,204.90
MobileNetV1-1
ImageNet
224x224x3
0.58
4.22
BSD 3-Clause
Top1
69.49
68.84
4,940
2,763.11
MobileNetV2-1
ImageNet
224x224x3
0.32
3.49
MIT
Top1
72.14
71.7
3,617
3,161.57
MobileNetV3L-1
ImageNet
224x224x3
0.23
5.47
BSD 3-Clause
Top1
75.25
72.46
3,258
3,506.84
RegNetX400MF-1
ImageNet
224x224x3
0.42
5.48
BSD 3-Clause
Top1
74.88
74.11
1,500
2,042.85
RegNetX800MF-1
ImageNet
224x224x3
0.81
7.24
BSD 3-Clause
Top1
77.52
77.17
1,087
1,241.74
RegNetY200MF-1
ImageNet
224x224x3
0.21
3.15
BSD 3-Clause
Top1
70.36
69.02
2,577
3,880.45
RegNetY400MF-1
ImageNet
224x224x3
0.41
4.33
MIT
Top1
75.78
74.96
1,781
2,109.10
RegNetY800MF-1
ImageNet
224x224x3
0.85
6.42
BSD 3-Clause
Top1
78.83
77.01
1,217
1,235.36
RepVGGA1-1
ImageNet
320X320x3
4.83
12.79
BSD 3-Clause
Top1
75.28
63.59
1,616
545.90
ResNet101-1
ImageNet
224x224x3
7.8
44.55
BSD 3-Clause
Top1
81.9
81.22
669
265.66
ResNet18-1
ImageNet
224x224x3
1.82
11.69
BSD 3-Clause
Top1
69.75
69.62
2,780
1,114.47
ResNet34-1
ImageNet
224x224x3
3.67
21.79
BSD 3-Clause
Top1
73.3
73.28
1,498
556.93
ResNet50-1
ImageNet
224x224x3
4.27
25.0
BSD 3-Clause
Top1
80.85
80.3
1,138
480.58
ResNeXt26_32x4d-1
ImageNet
224x224x3
2.49
15.37
BSD 3-Clause
Top1
75.85
75.61
842
573.06
ResNeXt50_32x4d-1
ImageNet
224x224x3
4.27
25.0
BSD 3-Clause
Top1
81.19
80.29
490
336.72
SqueezeNet1_0-1
ImageNet
224x224x3
0.83
1.25
AGPL-3.0
Top1
58.09
56.59
2,133
1,597.78
SqueezeNet1_1-1
ImageNet
224x224x3
0.36
1.24
AGPL-3.0
Top1
58.18
56.07
4,177
4,045.80
VGG11-1
ImageNet
224x224x3
7.63
132.86
GPL-3.0
Top1
69.03
68.98
294
238.05
VGG11BN-1
ImageNet
224x224x3
7.63
132.86
GPL-3.0
Top1
70.37
70.22
291
231.96
VGG13-1
ImageNet
224x224x3
11.34
133.05
GPL-3.0
Top1
69.93
69.63
271
188.84
VGG13BN-1
ImageNet
224x224x3
11.34
133.05
AGPL-3.0
Top1
71.55
71.39
272
169.69
VGG19BN-1
ImageNet
224x224x3
19.69
143.67
AGPL-3.0
Top1
74.24
72.98
234
131.04
WideResNet101-2
ImageNet
224x224x3
22.81
126.82
AGPL-3.0
Top1
82.52
82.31
276
96.73
WideResNet50-2
ImageNet
224x224x3
11.43
68.85
AGPL-3.0
Top1
81.61
81.08
485
187.19

Object Detection

NameDatasetInput ResolutionOperationsParametersLicenseMetricRaw AccuracyNPU AccuracyFPSFPS/WattSourceCompiledonnxjson
SSDMV1-1
VOC2007Detection
300X300x3
1.55
9.48
AGPL-3.0
mAP50
67.59
67.699
1,847
1,256.19
SSDMV2Lite-1
VOC2007Detection
300x300x3
0.7
3.38
AGPL-3.0
mAP50
68.704
68.652
1,641
1,567.31
YOLOV3-1
COCO
640x640x3
81.13
62.02
Apache-2.0
mAP50
46.654
65.719
104
25.70
YOLOV5L-1
COCO
640x640x3
57.1
46.64
MIT
mAP50
48.74
67.146
140
35.95
YOLOV5M-1
COCO
640x640x3
26.07
21.27
MIT
mAP50
45.082
63.895
181
73.83
YOLOV5N-1
COCO
640x640x3
2.71
1.97
GPL-3.0
mAP50
28.081
44.945
304
484.52
YOLOV5S-1
COCO
640x640x3
9.1
7.33
GPL-3.0
mAP50
37.451
56.799
278
201.90
YOLOV7-2
COCO
640x640x3
55.28
36.92
GPL-3.0
mAP50
50.862
69.587
113
37.47
YOLOV7E6-1
COCO
1280x1280x3
269.21
97.27
GPL-3.0
mAP50
55.58
73.221
21
7.36
YOLOV7Tiny-1
COCO
640x640x3
7.01
6.24
GPL-3.0
mAP50
37.289
55.058
269
225.77
YOLOV8L-1
COCO
640x640x3
85.13
43.69
AGPL-3.0
mAP50
52.572
68.567
82
24.17
YOLOv9-C-2
COCO
640x640x3
53.92
25.31
GPL-3.0
mAP50
52.856
68.868
80
35.72
YOLOv9-S-2
COCO
640x640x3
14.51
7.13
GPL-3.0
mAP50
46.683
59.338
167
113.54
YOLOv9-T-2
COCO
640x640x3
4.56
2.03
GPL-3.0
mAP50
38.268
49.704
188
235.46
YOLOXS-1
COCO
640x640x3
14.41
8.96
Apache-2.0
mAP50
40.29
59.042
289
129.56

Segmentation

NameDatasetInput ResolutionOperationsParametersLicenseMetricRaw AccuracyNPU AccuracyFPSFPS/WattSourceCompiledonnxjson
BiSeNetV1-1
CitySpace
1280x2048x3
118.98
13.27
BSD 3-Clause
mIoU
75.367
75.187
18
14.57
BiSeNetV2-1
CitySpace
1280x2048x3
99.14
3.35
MIT
mIoU
74.925
74.109
31
19.69
DeepLabV3PlusMobilenet-1
VOCSegmentation
512x512x3
26.62
5.8
BSD 3-Clause
mIoU
68.473
50.448
224
73.94

Face ID

NameDatasetInput ResolutionOperationsParametersLicenseMetricRaw AccuracyNPU AccuracyFPSFPS/WattSourceCompiledonnxjson
YOLOV5M_Face-1
WiderFace
640x640x3
25.84
22.0
GPL-3.0
AP(Easy)
AP(Med)
AP(Hard)
95.507
94.027
85.649
95.48
94.035
85.765
196
70.76
YOLOV5S_Face-1
WiderFace
640x640x3
8.53
8.07
GPL-3.0
AP(Easy)
AP(Med)
AP(Hard)
94.57
92.94
83.698
94.616
92.981
83.78
356
213.96
YOLOV7_Face-1
WiderFace
640x640x3
54.63
38.55
GPL-3.0
AP(Easy)
AP(Med)
AP(Hard)
96.925
95.689
88.337
97.002
95.738
88.323
117
37.55
YOLOV7_W6_Face-1
WiderFace
960x960x3
100.21
74.44
GPL-3.0
AP(Easy)
AP(Med)
AP(Hard)
96.41
95.091
88.61
96.387
95.085
88.535
69
20.29
YOLOV7_W6_TTA_Face-1
WiderFace
1280x1280x3
178.16
77.96
GPL-3.0
AP(Easy)
AP(Med)
AP(Hard)
95.89
94.929
89.952
95.977
94.995
90.155
38
11.26
YOLOV7s_Face-1
WiderFace
640x640x3
9.35
6.26
GPL-3.0
AP(Easy)
AP(Med)
AP(Hard)
94.86
93.3
85.304
94.887
93.266
85.198
263
174.37

Image De-noising

NameDatasetInput ResolutionOperationsParametersLicenseMetricRaw AccuracyNPU AccuracyFPSFPS/WattSourceCompiledonnxjson
DnCNN-2
BSD68
512x512x1
145.8
0.56
BSD 3-Clause
PSNR
SSIM
31.709
0.8905
30.5031
0.8688
37
12.19
DnCNN-3
BSD68
512x512x1
145.8
0.56
MIT
PSNR
SSIM
29.1919
0.8276
28.6563
0.816
37
11.98
DnCNN-4
BSD68
512x512x1
145.8
0.56
Apache-2.0
PSNR
SSIM
26.1882
0.7184
21.1825
0.6026
37
11.98
DEEPX HQ
5F, 20, Pangyoyeok-ro 241beon-gil, Bundang-gu,
Seongnam-si, Gyeonggi-do, Republic of Korea
US Office
3003 North First Street #316, San Jose, CA 95135
Taiwan Office
Rm. 950, 9F., No. 208, Sec. 3, Nanjing E. Rd.,
Zhongshan Dist., Taipei City 104, Taiwan (R.O.C.)
Contact US
E-mail: tech_support@deepx.ai
Copyrightⓒ 2025 DEEPX Co., Ltd. All Rights Reserved.