| Name | Dataset | Input Resolution | Operations | Parameters | License | Metric | Raw Accuracy | NPU Accuracy | FPS | FPS/Watt | Source | Compiled | onnx | json |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AlexNet-1 | ImageNet | 224x224x3 | 0.72 | 61.1 | BSD 3-Clause | Top1 | 56.54 | 56.44 | 663 | 1,218.68 | ||||
DenseNet121-1 | ImageNet | 224x224x3 | 3.19 | 8.04 | BSD 3-Clause | Top1 | 74.43 | 73.29 | 33 | 0.38 | ||||
DenseNet161-1 | ImageNet | 224x224x3 | 8.43 | 28.86 | MIT | Top1 | 77.11 | 76.89 | 14 | 0.38 | ||||
EfficientNetB2-1 | ImageNet | 288x288x3 | 1.6 | 9.08 | BSD 3-Clause | Top1 | 80.61 | 79.06 | 757 | 740.28 | ||||
EfficientNetV2S-1 | ImageNet | 384X384x3 | 9.47 | 21.38 | BSD 3-Clause | Top1 | 84.24 | 0.29 | 624 | 270.94 | ||||
HarDNet39DS-1 | ImageNet | 224x224x3 | 4.26 | 17.56 | MIT License | Top1 | 72.08 | 71.62 | 1,838 | 2,204.90 | ||||
MobileNetV1-1 | ImageNet | 224x224x3 | 0.58 | 4.22 | BSD 3-Clause | Top1 | 69.49 | 68.84 | 4,940 | 2,763.11 | ||||
MobileNetV2-1 | ImageNet | 224x224x3 | 0.32 | 3.49 | MIT | Top1 | 72.14 | 71.7 | 3,617 | 3,161.57 | ||||
MobileNetV3L-1 | ImageNet | 224x224x3 | 0.23 | 5.47 | BSD 3-Clause | Top1 | 75.25 | 72.46 | 3,258 | 3,506.84 | ||||
RegNetX400MF-1 | ImageNet | 224x224x3 | 0.42 | 5.48 | BSD 3-Clause | Top1 | 74.88 | 74.11 | 1,500 | 2,042.85 | ||||
RegNetX800MF-1 | ImageNet | 224x224x3 | 0.81 | 7.24 | BSD 3-Clause | Top1 | 77.52 | 77.17 | 1,087 | 1,241.74 | ||||
RegNetY200MF-1 | ImageNet | 224x224x3 | 0.21 | 3.15 | BSD 3-Clause | Top1 | 70.36 | 69.02 | 2,577 | 3,880.45 | ||||
RegNetY400MF-1 | ImageNet | 224x224x3 | 0.41 | 4.33 | MIT | Top1 | 75.78 | 74.96 | 1,781 | 2,109.10 | ||||
RegNetY800MF-1 | ImageNet | 224x224x3 | 0.85 | 6.42 | BSD 3-Clause | Top1 | 78.83 | 77.01 | 1,217 | 1,235.36 | ||||
RepVGGA1-1 | ImageNet | 320X320x3 | 4.83 | 12.79 | BSD 3-Clause | Top1 | 75.28 | 63.59 | 1,616 | 545.90 | ||||
ResNet101-1 | ImageNet | 224x224x3 | 7.8 | 44.55 | BSD 3-Clause | Top1 | 81.9 | 81.22 | 669 | 265.66 | ||||
ResNet18-1 | ImageNet | 224x224x3 | 1.82 | 11.69 | BSD 3-Clause | Top1 | 69.75 | 69.62 | 2,780 | 1,114.47 | ||||
ResNet34-1 | ImageNet | 224x224x3 | 3.67 | 21.79 | BSD 3-Clause | Top1 | 73.3 | 73.28 | 1,498 | 556.93 | ||||
ResNet50-1 | ImageNet | 224x224x3 | 4.27 | 25.0 | BSD 3-Clause | Top1 | 80.85 | 80.3 | 1,138 | 480.58 | ||||
ResNeXt26_32x4d-1 | ImageNet | 224x224x3 | 2.49 | 15.37 | BSD 3-Clause | Top1 | 75.85 | 75.61 | 842 | 573.06 | ||||
ResNeXt50_32x4d-1 | ImageNet | 224x224x3 | 4.27 | 25.0 | BSD 3-Clause | Top1 | 81.19 | 80.29 | 490 | 336.72 | ||||
SqueezeNet1_0-1 | ImageNet | 224x224x3 | 0.83 | 1.25 | AGPL-3.0 | Top1 | 58.09 | 56.59 | 2,133 | 1,597.78 | ||||
SqueezeNet1_1-1 | ImageNet | 224x224x3 | 0.36 | 1.24 | AGPL-3.0 | Top1 | 58.18 | 56.07 | 4,177 | 4,045.80 | ||||
VGG11-1 | ImageNet | 224x224x3 | 7.63 | 132.86 | GPL-3.0 | Top1 | 69.03 | 68.98 | 294 | 238.05 | ||||
VGG11BN-1 | ImageNet | 224x224x3 | 7.63 | 132.86 | GPL-3.0 | Top1 | 70.37 | 70.22 | 291 | 231.96 | ||||
VGG13-1 | ImageNet | 224x224x3 | 11.34 | 133.05 | GPL-3.0 | Top1 | 69.93 | 69.63 | 271 | 188.84 | ||||
VGG13BN-1 | ImageNet | 224x224x3 | 11.34 | 133.05 | AGPL-3.0 | Top1 | 71.55 | 71.39 | 272 | 169.69 | ||||
VGG19BN-1 | ImageNet | 224x224x3 | 19.69 | 143.67 | AGPL-3.0 | Top1 | 74.24 | 72.98 | 234 | 131.04 | ||||
WideResNet101-2 | ImageNet | 224x224x3 | 22.81 | 126.82 | AGPL-3.0 | Top1 | 82.52 | 82.31 | 276 | 96.73 | ||||
WideResNet50-2 | ImageNet | 224x224x3 | 11.43 | 68.85 | AGPL-3.0 | Top1 | 81.61 | 81.08 | 485 | 187.19 |
| Name | Dataset | Input Resolution | Operations | Parameters | License | Metric | Raw Accuracy | NPU Accuracy | FPS | FPS/Watt | Source | Compiled | onnx | json |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSDMV1-1 | VOC2007Detection | 300X300x3 | 1.55 | 9.48 | AGPL-3.0 | mAP50 | 67.59 | 67.699 | 1,847 | 1,256.19 | ||||
SSDMV2Lite-1 | VOC2007Detection | 300x300x3 | 0.7 | 3.38 | AGPL-3.0 | mAP50 | 68.704 | 68.652 | 1,641 | 1,567.31 | ||||
YOLOV3-1 | COCO | 640x640x3 | 81.13 | 62.02 | Apache-2.0 | mAP50 | 46.654 | 65.719 | 104 | 25.70 | ||||
YOLOV5L-1 | COCO | 640x640x3 | 57.1 | 46.64 | MIT | mAP50 | 48.74 | 67.146 | 140 | 35.95 | ||||
YOLOV5M-1 | COCO | 640x640x3 | 26.07 | 21.27 | MIT | mAP50 | 45.082 | 63.895 | 181 | 73.83 | ||||
YOLOV5N-1 | COCO | 640x640x3 | 2.71 | 1.97 | GPL-3.0 | mAP50 | 28.081 | 44.945 | 304 | 484.52 | ||||
YOLOV5S-1 | COCO | 640x640x3 | 9.1 | 7.33 | GPL-3.0 | mAP50 | 37.451 | 56.799 | 278 | 201.90 | ||||
YOLOV7-2 | COCO | 640x640x3 | 55.28 | 36.92 | GPL-3.0 | mAP50 | 50.862 | 69.587 | 113 | 37.47 | ||||
YOLOV7E6-1 | COCO | 1280x1280x3 | 269.21 | 97.27 | GPL-3.0 | mAP50 | 55.58 | 73.221 | 21 | 7.36 | ||||
YOLOV7Tiny-1 | COCO | 640x640x3 | 7.01 | 6.24 | GPL-3.0 | mAP50 | 37.289 | 55.058 | 269 | 225.77 | ||||
YOLOV8L-1 | COCO | 640x640x3 | 85.13 | 43.69 | AGPL-3.0 | mAP50 | 52.572 | 68.567 | 82 | 24.17 | ||||
YOLOv9-C-2 | COCO | 640x640x3 | 53.92 | 25.31 | GPL-3.0 | mAP50 | 52.856 | 68.868 | 80 | 35.72 | ||||
YOLOv9-S-2 | COCO | 640x640x3 | 14.51 | 7.13 | GPL-3.0 | mAP50 | 46.683 | 59.338 | 167 | 113.54 | ||||
YOLOv9-T-2 | COCO | 640x640x3 | 4.56 | 2.03 | GPL-3.0 | mAP50 | 38.268 | 49.704 | 188 | 235.46 | ||||
YOLOXS-1 | COCO | 640x640x3 | 14.41 | 8.96 | Apache-2.0 | mAP50 | 40.29 | 59.042 | 289 | 129.56 |
| Name | Dataset | Input Resolution | Operations | Parameters | License | Metric | Raw Accuracy | NPU Accuracy | FPS | FPS/Watt | Source | Compiled | onnx | json |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BiSeNetV1-1 | CitySpace | 1280x2048x3 | 118.98 | 13.27 | BSD 3-Clause | mIoU | 75.367 | 75.187 | 18 | 14.57 | ||||
BiSeNetV2-1 | CitySpace | 1280x2048x3 | 99.14 | 3.35 | MIT | mIoU | 74.925 | 74.109 | 31 | 19.69 | ||||
DeepLabV3PlusMobilenet-1 | VOCSegmentation | 512x512x3 | 26.62 | 5.8 | BSD 3-Clause | mIoU | 68.473 | 50.448 | 224 | 73.94 |
| Name | Dataset | Input Resolution | Operations | Parameters | License | Metric | Raw Accuracy | NPU Accuracy | FPS | FPS/Watt | Source | Compiled | onnx | json |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
YOLOV5M_Face-1 | WiderFace | 640x640x3 | 25.84 | 22.0 | GPL-3.0 | AP(Easy) AP(Med) AP(Hard) | 95.507 94.027 85.649 | 95.48 94.035 85.765 | 196 | 70.76 | ||||
YOLOV5S_Face-1 | WiderFace | 640x640x3 | 8.53 | 8.07 | GPL-3.0 | AP(Easy) AP(Med) AP(Hard) | 94.57 92.94 83.698 | 94.616 92.981 83.78 | 356 | 213.96 | ||||
YOLOV7_Face-1 | WiderFace | 640x640x3 | 54.63 | 38.55 | GPL-3.0 | AP(Easy) AP(Med) AP(Hard) | 96.925 95.689 88.337 | 97.002 95.738 88.323 | 117 | 37.55 | ||||
YOLOV7_W6_Face-1 | WiderFace | 960x960x3 | 100.21 | 74.44 | GPL-3.0 | AP(Easy) AP(Med) AP(Hard) | 96.41 95.091 88.61 | 96.387 95.085 88.535 | 69 | 20.29 | ||||
YOLOV7_W6_TTA_Face-1 | WiderFace | 1280x1280x3 | 178.16 | 77.96 | GPL-3.0 | AP(Easy) AP(Med) AP(Hard) | 95.89 94.929 89.952 | 95.977 94.995 90.155 | 38 | 11.26 | ||||
YOLOV7s_Face-1 | WiderFace | 640x640x3 | 9.35 | 6.26 | GPL-3.0 | AP(Easy) AP(Med) AP(Hard) | 94.86 93.3 85.304 | 94.887 93.266 85.198 | 263 | 174.37 |
| Name | Dataset | Input Resolution | Operations | Parameters | License | Metric | Raw Accuracy | NPU Accuracy | FPS | FPS/Watt | Source | Compiled | onnx | json |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DnCNN-2 | BSD68 | 512x512x1 | 145.8 | 0.56 | BSD 3-Clause | PSNR SSIM | 31.709 0.8905 | 30.5031 0.8688 | 37 | 12.19 | ||||
DnCNN-3 | BSD68 | 512x512x1 | 145.8 | 0.56 | MIT | PSNR SSIM | 29.1919 0.8276 | 28.6563 0.816 | 37 | 11.98 | ||||
DnCNN-4 | BSD68 | 512x512x1 | 145.8 | 0.56 | Apache-2.0 | PSNR SSIM | 26.1882 0.7184 | 21.1825 0.6026 | 37 | 11.98 |